Unit Three Homework Assignment Respiratory System Chapter (2025 3 7)

Mechanics of Breathing: (10.56 min)

- 1. What is breathing? Terms used to describe air movement?
- 2. What are the two serous membranes of the lungs called? What is between these membranes?
- 3. What skeletal muscle is at the base of the thoracic cavity? What happens when this muscle contracts?
- 4. What other structures may help expand the thoracic cavity?
- 5. What are important features about air in the mechanics of breathing?
- 6. What are the three regions of pressure important in the mechanism of breathing? What is the relative pressure in each area when no air is moving?
- 7. What happens when the diagram contracts? The changes in pressures in the three regions?
- 8. Is expiration passive or active? Explain why.

Surfactant and Surface Tension (4.27 min)

- 1. What is the functional unit of the lung?
- 2. What is lining the inside of this functional unit?
- 3. What causes the surface tension? As the unit gets smaller what happens to the surface tension?
- 4. What two forces contribute to elastic recoil?
- 5. What is the force called resisting elastic recoil? When is this force low?
- 6. What causes surface tension to be reduced? Produced where and by what?
- 7. What happens if there is no surfactant synthesis?
- 8. What happens if there is more surfactant?

Neural Regulation of Respiration (13 min)

- 1. What center in the upper pons control fine tuning of the respiratory rate? What does this structure do when the lung is fully expanded?
- 2. What center may cause prolonged inspiration if another center is damaged? Name both center's functions.
- 3. What is the significance of the central chemoreceptors? Monitor what?
- 4. What is the function of the dorsal respiratory group? What type of stimuli does this structure receive? From where? What type of signals does the DRG send and to where?
- 5. What is the function of the ventral respiratory group? What two complexes are part of the VRG? Functions of each? Which one is the pacemaker?
- 6. What is the function of the VGR nucleus retro ambiguous? Regulates what two muscles for inspiration?
- 7. Where are signals from the VGR go? What to nerves travel from the VRG into the thoracic cavity?
- 8. What is the normal respiratory rate?

Control of Respiration (7.48 min)

- 1. What two structures make up the medullary respiratory centers? Function of each?
- 2. What is the function of the pontine respiratory center?
- 3. What muscles cause inspiration?
- 4. How may the cerebrum affect breathing? By influence on what structure?
- 5. What are the two main centers used to regulate breathing in the medulla? Monitor what?
- 6. May skeletal muscles in your arm influence breathing? Explain
- 7. What two factors within the lung tissue may influence breathing?

Partial Pressures: Movement of Oxygen and Carbon Dioxide (3 min)

- 1. How do we express the amount of gas in air? Units used?
- 2. What is the PO2 coming into the alveoli from the atmosphere?
- 3. What is the PCO2 in the alveoli coming from the pulmonary capillaries?
- 4. What happens to the CO2 when you expire?
- 5. What is the direction of diffusion of the oxygen and carbon dioxide?
- 6. What is the net diffusion at the venous side of the pulmonary capillary?
- 7. What is the direction of gas diffusion in the systemic circuit?

Everything You Need to Know About Ventilation Perfusion Ratios (6:37 min)

- 1. What determines the oxygen tension in the pulmonary vein?
- 2. Are all areas of the lung equally ventilated and perfused?
- 3. What is the partial pressure of oxygen and carbon dioxide in an alveoli when ventilation is equal to perfusion?
- 4. What happens to gas ratio if alveoli is perfused but not ventilated?
- 5. How many alveoli are in the human lung?
- 6. What part of the lung is better ventilated, apex or base?
- 7. What part of the lung is better perfused, apex or base?
- 8. What is better at the apex, ventilation or perfusion?
- 9. What is better at the base, ventilation or perfusion?

Carbon Dioxide Transport (8 min)

- 1. When is the carbon dioxide formed? Where?
- 2. What occurs when water and carbon dioxide is mixed? Occurs where?
- 4. What happens after carbonic acid is formed?
- 5. Where does the proton go?
- 6. Where does the bicarbonate go?
- 7. What is the chloride shift?
- 8. So, how is CO2 transported in the blood?
- 9. What happens to the chemical reaction that occurred in the tissue of your body when the blood enters the lungs?
- 10. What would happen to your blood pH is you reduced your breathing?

How Red Blood Cells Carry Oxygen and Carbon Dioxide (3.47 min)

- 1. How are erythrocytes different than most cells (three things)?
- 2. What two structural proteins and corpuscle shape make RBC strong, flexible, and elastic?
- 3. What macromolecule is inside RBC? What is the significance of the heme component? How many?
- 4. How many oxygen molecules may bind to one hemoglobin molecule? Why?
- 5. Where is oxygen loaded and unloaded onto the hemoglobin?
- 6. Is most carbon dioxide transported by hemoglobin? If not then how? What enzyme is required?

Transport of Respiratory Gases (3:30 min)

- 1. How many haem groups are in a single hemoglobin molecule?
- 2. How many oxygen molecules may a hemoglobin; in molecule carry?
- 3. What is the chemical formula for oxyhemoglobin?
- 4. What happens to oxygen on the hemoglobin moleulce when the partial pressure of oxygen in the blood is low?
- 5. What is the function of carbonic anhydrase?
- 6 How do protons (H+) affect the oxygen bound to hemoglobin?
- 7. In what form is bicarbonate transported in the blood?
- 8. Why may you consider hemoglobin to be a buffer?
- 9. What is the Bohr effect?
- 10. At a partial PO2, will the percent saturation of oxyhemoglobin be greater in human fetal hemoglobin or human maternal hemoglobin?